INACTIVATED PRODUCTS OF RIFAMPICIN BY PATHOGENIC Nocardia spp.: STRUCTURES OF GLYCOSYLATED AND PHOSPHORYLATED METABOLITES OF RIFAMPICIN AND 3-FORMYLRIFAMYCIN SV

NAOKO MORISAKI and SHIGEO IWASAKI*

Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan

KATSUKIYO YAZAWA, YUZURU MIKAMI and AKIO MAEDA

Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260, Japan

(Received for publication May 11, 1993)

Rifampicin (1) was converted into four inactivated products by pathogenic *Nocardia*, RIP-1 and RIP-2 by *N. brasiliensis* and RIP-3 and RIP-4 by *N. otiitidiscaviarum*. MS and NMR analysis showed the compounds to be 3-formyl-23-[O-(β -D-glucopyranosyl)]rifamycin SV (2), 23-[O-(β -D-glucopyranosyl)]rifampicin (3), 21-(O-phosphoryl)rifampicin (4) and 3-formyl-21-(O-phosphoryl)-rifamycin SV (5), respectively.

Most pathogenic *Nocardia* are found to be resistant to rifampicin (1),^{1~3)} a semisynthetic antibiotic widely used as a valuable chemotherapeutic agent.⁴⁾ During the studies on the mechanism of the resistance,

four inactivated products of 1 were isolated, which show that the principal resistance mechanism of these organisms is the transformation of 1 to inactive compounds.^{4,5)}

In this paper we describe the structural elucidation of the four products, RIP-1 and RIP-2 inactivated by *N. brasiliensis*, and RIP-3 and RIP-4 by *N. otitidiscaviarum*. The spectral evidence indicates the structures of RIP-1, -2, -3 and -4 as 3-formyl-23-[O-(β -D-glucopyranosyl)]rifamycin SV (2), 23-[O-(β -D-glucopyranosyl)]rifampicin (3), 21-(O-phosphoryl)rifampicin (4) and 3-formyl-21-(O-phosphoryl)rifamycin SV (5), respectively (Fig. 1).

Experimental

¹H, ¹³C and ³¹P NMR spectra were measured in CD₃OD on a JEOL ALPHA-500 NMR spectrometer at 500, 125 and 202.35 MHz, respectively. chemical shifts of ¹H and ¹³C NMR were recorded in δ units relative to internal tetramethylsilane ($\delta = 0$) and ³¹P NMR were relative to external potassium phosphate ($\delta = 0$). FAB-MS and HRFAB-MS were Fig. 1. Structures of rifampicin (1), RIP-1 (2), RIP-2 (3), RIP-3 (4) and RIP-4 (5).

 $R_2 = H, R_3 = \beta$ -D-glucose

RIP-3 (4)
$$R_1 = CH = N - N$$
 $N - CH_3$

$$R_2 = -PO_3H_2, R_3 = H$$

RIP-4 (5) $R_1 = CHO, R_2 = -PO_3H_2, R_3 = H$

Compounds	Method	Found (m/z)	Assignments
RIP-1	Positive FAB-MS	910	M+Na
	Negative FAB-MS	886	M-H
	HRFAB-MS	910.3518	Calcd for C ₄₄ H ₅₇ NO ₁₈ Na
			(M + Na): 910.3474
RIP-2	Positive FAB-MS	1,007	N + Na
	Negative FAB-MS	983	M-H
	HRFAB-MS	1,007.4550	Calcd for $C_{49}H_{68}N_4O_{17}Na$
			(M + Na): 1,007.4480
RIP-3	Positive FAB-MS	903	M + H
		925	M + Na
		947	M + 2Na - H
		969	M + 3Na - 2H
	Negative FAB-MS	901	M-H
	0	923	M + Na - 2H
	HRFAB-MS	947.3471	Calcd for C ₄₃ H ₅₈ N ₄ O ₁₅ PNa ₂
			(M + 2Na - H): 947.3431
RIP-4	Positive FAB-MS	828	M + Na
		850	M + 2Na - H
		872	M + 3Na - 2H
	Negative FAB-MS	804	M-H
		826	M + Na - 2H
	HRFAB-MS	828.2602	Calcd for $C_{38}H_{48}NO_{16}PNa$ (M + Na): 828.2608

Table 1. Mass spectral data for RIPs.

Table 2. ¹H NMR chemical shifts (δ , ppm) and coupling constants of rifampicin, RIP-1 and RIP-2 in CD₃OD.

Proton	Rifampicin	RIP-1	RIP-2
13	1.71 (3H, s)	1.70 (3H, s)	1.69 (3H, s)
14	2.02 (3H, s)	2.02 (3H, s)	2.00 (3H, s)
17	6.35 (1H, br d, $J = 10.5 \text{ Hz}$)	6.30 (1H, br d, $J = 11.0 \text{ Hz}$)	6.40 (br d, $J = 10.0$ Hz)
18	7.25 (1H, dd, $J = 15.8$, 10.5 Hz)	7.44 (1H, dd, $J = 16.0, 11.0 \mathrm{Hz}$)	7.20 (1H, m)
19	6.08 (1H, dd, $J = 15.8$, 7.0 Hz)	6.14 (1H, dd, $J = 16.0, 7.5 \text{ Hz}$)	6.04 (1H, dd, $J = 16.0, 6.5$ Hz)
20	2.31 (1H, m)	2.32 (1H, m)	2.30 (1H, m)
21	3.87 (1H, dd, $J = 10.0, 1.0$ Hz)	3.88 (1H, d, J=9.5 Hz)	3.87 (1H, d, $J = 9.0$ Hz)
22	1.74 (1H, m)	1.92 (1H, br q, $J = 7.0$ Hz)	1.83 (1H, br q, $J = 7.0$ Hz)
23	3.08 (1H, dd, J = 10.5, 2.0 Hz)	3.59 (1H, d, J=9.0 Hz)	3.56 (1H, d, J=9.0 Hz)
24	1.48 (1H, m)	1.54 (1H, m)	1.56 (1H, m)
25	5.16 (1H, d, $J = 10.5$ Hz)	5.39 (1H, d, $J = 10.5$ Hz)	5.34 (1H, d, $J = 10.5$ Hz)
26	1.24 (1H, m)	1.02 (1H, m)	1.01 (1H, m)
27	3.38 (1H, d, J = 8.0 Hz)	3.34 (1H, d, J = 8.5 Hz)	3.34 (1H, dd, J = 8.5, 1.5 Hz)
28	5.07 (1H, dd, J = 12.7, 8.0 Hz)	5.09 (1H, dd, $J = 12.5$, 8.5 Hz)	5.14 (1H, dd, J = 12.5, 8.5 Hz)
29	6.26 (1H, d, $J = 12.7$ Hz)	6.31 (1H, d, $J = 12.5$ Hz)	6.27 (1H, d, J = 12.5 Hz)
30	2.02 (3H, s)	1.98 (3H, s)	2.02 (3H, s)
31	0.93 (3H, d, $J = 7.0$ Hz)	1.01 (3H, d, $J = 7.0$ Hz)	0.94 (3H, d, J = 7.0 Hz)
32	0.99 (3H, d, J = 7.0 Hz)	1.08 (3H, d, $J = 7.0$ Hz)	1.03 (3H, d, $J = 7.0$ Hz)
33	0.61 (3H, d, $J = 7.0$ Hz)	0.60 (3H, d, J = 7.0 Hz)	0.54 (3H, d, J = 7.0 Hz)
34	-0.21 (3H, d, $J = 7.0$ Hz)	-0.11 (3H, d, $J = 7.0$ Hz)	0.03 (3H, d, J = 7.0 Hz)
36	2.02 (3H, s)	2.02 (3H, s)	2.02 (3H, s)
37	3.00 (3H, s)	3.01 (3H, s)	3.01 (3H, s)
$N-CH_3$	2.78 (3H, s)	—	2.42 (3H, s)
PhCH=N-N	8.32 (1H, s)	·i	8.19 (1H, s)
PhCH=O		10.52 (1H, s)	
CH_2N	3.30 (4H, br m) ^a ,		3.18 (4H, brm),
	3.18 (4H, br m)		2.72 (4H, br m)
Glu-1'		4.42 (1H, d, $J = 7.5$ Hz)	4.40 (1H, d, $J = 7.8$ Hz)
Glu-2'		2.97 (1H, dd, $J=9.5$, 7.5 Hz)	2.99 (1H, dd, $J = 9.0$, 7.8 Hz)
Glu-3'		3.28 (1H, dd, J=9.5, 9.0 Hz)	3.26 (1H, dd, J=9.5, 9.0 Hz)
Glu-4'		3.15 (1H, dd, J=9.0, 8.0 Hz)	3.16 ^a
Glu-5'		3.17 (1H, ddd, J=8.0, 4.5, 1.5 Hz)	3.16 ^a
Glu-6'		3.58 (1H, dd, J = 12.5, 4.5 Hz),	3.59 (1H, dd, J = 12.5, 5.0 Hz),
		3.81 (1H, dd, J = 12.5, 1.5 Hz)	3.81 (1H, dd, J = 12.5, 1.5 Hz)

^a Obscured by other resonances.

Carbon	Rifampicin	RIP-1	RIP-2	Carbon	Rifampicin	RIP-1	RIP-2
$1 \sim 10$	184.0	185.3	185.6	25	75.6	77.3	77.3
	175.8	174.2	174.7	26	41.7	42.8	42.8
	149.3	152.3	149.0	27	78.5	78.7	78.9
	147.9	148.8	147.1	28	120.1 ^b	119.9	120.0
	119.7 ^b	120.3	118.8	29	144.7	145.4	145.1
	118.2	120.2	117.9	30	20.8	20.3	20.7
	116.1	119.2	116.9	31	18.2	18.3	18.4
	116.0	115.3	115.9	32	11.0	11.9	12.3
	105.0	105.7	104.3	33	9.4	10.9	10.9
	101.9	101.7	101.3	34	9.7	9.5	9.8
11	189.0	188.6	187.3	35	172.4	172.9	172.9
12	110.6	110.6	110.5	36	20.8	21.0	21.0
13	22.4	22.4	22.3	37	56.7	56.4	56.4
14	7.5	7.4	7.4	NCH ₃	43.7		45.4
15	171.1	171.6	174.7	PhCH = N-N	138.8		136.8
16	133.1	133.3	133.2	PhCH=O	_	193.1	
17	134.8	134.1	135.1	CH_2N	53.2	_	54.6
18	129.0	129.7	128.6		49.5ª		50.9
19	140.7	140.0	141.0	Glu-1'		104.0	103.9
20	39.1	39.3	40.3	Glu-2'		76.0	75.9
21	75.2	76.0	74.0	Glu-3'		78.1°	78.1 ^d
22	34.4	36.0	36.4	Glu-4'		71.3	71.4
23	78.2	88.9	88.5	Glu-5'		78.2°	78.2 ^d
24	39.4	39.6	39.5	Glu-6'		62.7	62.8

Table 3. ¹³C NMR chemical shifts (δ , ppm) of rifampicin, RIP-1 and RIP-2 in CD₃OD.

^a Obscured by other resonances.

^{b~d} Interchangeable.

measured on a JEOL HX110 instrument. Biological transformation of rifampicin to RIPs, the isolation and purification are described elsewhere.^{4,5)}

Structure

The structures of **RIPs** were determined spectroscopically by comparison with the data of rifampicin.

Positive FAB-MS of RIP-1 showed a peak at

m/z 910 (M + Na)⁺, and negative FAB-MS at m/z 886 (M – H)⁻. The molecular formula was determined by HRFAB-MS to be C₄₄H₅₇NO₁₈ (Table 1).

The structure of RIP-1 was elucidated to be 3-formyl-23-[O-(β -D-glucopyranosyl)]rifamycin SV (2) by ¹H NMR, ¹³C NMR, COSY, C-H COSY and HMBC experiments. ¹H NMR spectrum of RIP-1 (Table 2) showed a singlet due to a formyl proton at δ 10.52 instead of the signals of *N*-methyl piperazine moiety (δ 2.78, 3.30, 3.18) and of an olefinic proton on the carbon adjacent to C-3 (δ 8.32) present in rifampicin,⁶ indicating the 1-amino-4-methyl piperazine moiety has been cleaved off by hydrolysis. The formyl carbon signal was also shown at δ 193.1 in ¹³C NMR spectrum (Table 3). Protons 17-H through 21-H and 25-H through 29-H were correlated by COSY spectrum and carbon signals of C-15 through C-29 were assigned by HMBC experiment. The presence of D-glucose was shown by signals at δ 104.0 (C-1'), 76.0 (C-2'), 78.1 (C-3'), 71.3 (C-4'), 78.2 (C-5') and 62.7 (C-6') in the ¹³C NMR spectrum.⁷ The site of glycosylation was determined by HMBC experiment (Fig. 2) to correlate 23-H (δ 3.59) with C-1', and 1'-H (δ 4.42) with C-23 (δ 88.9). Down field shifts of the 23-H signal ($\Delta\delta$ 0.51 ppm) and C-23 signal ($\Delta\delta$ 10.7 ppm) relative to those of rifampicin also indicated the glycosylation of the OH group at C-23. The coupling constant of the anomeric proton at δ 4.42 (d, J=7.5 Hz) is consistent with the β -glucoside. No other significant differences were observed in the NMR and UV spectra of RIP-1 and rifampicin, indicating that the rest of the structures of these two compounds are the same.

Proton	RIP-3	RIP-4
13	1.69 (3H, s)	1.71 (3H, s)
14	1.99 (3H, s)	$1.99 (3H, s)^d$
17	6.33 (1H, br m)	6.30 (1H, d, $J = 11.0$ Hz)
18	6.98 (1H, br m)	7.16 (1H, br m)
19	5.83 (1H, br dd, $J = 15.0, 9.0 \text{ Hz}$)	5.92 (1H, dd, $J = 15.0, 8.0 \text{Hz}$)
20	2.22 (1H, br m)	2.30 (1H, br m)
21	4.28 (1H, br m)	4.23 (1H, br m)
22	1.81 (1H, br m)	1.88 (1H, br m)
23	2.81 (1H, dd, $J=9.5$, 3.0 Hz)	2.84 (1H, dd, $J = 10.0$, 2.5 Hz)
24	1.43 (1H, br m)	1.52 (1H, m)
25	5.01 (1H, br d, $J=9.5$ Hz)	5.08 (1H, d, $J = 11.0$ Hz)
26	1.0 ^b (1H, br m)	0.93 (1H, br m)
27	3.3 ^b	3.3 ^b
28	5.25 (1H, dd, J=12.5, 8.0 Hz)	5.27 (1H, dd, $J = 12.5$, 7.5 Hz)
29	6.16 (1H, d, $J = 12.5$ Hz)	6.19 (1H, d, $J = 12.5$ Hz)
30	1.97 (3H, s) ^c	2.02 (3H, s) ^d
31	1.13 (3H, d, J = 7.0 Hz)	1.12 (3H, d, J = 7.0 Hz)
32	0.91 (3H, d, J = 7.0 Hz)	0.97 (3H, d, J = 7.0 Hz)
33	0.21 (3H, d, $J = 7.0$ Hz)	$0.22 (3H, d, J = 7.0 Hz)^{e}$
34	0.31 (3H, br m)	0.23 (3H, d, $J = 7.0 \text{ Hz})^{e}$
36	2.01 (3H, s)°	2.02 (3H, s) ^d
37	3.02 (3H, s)	3.02 (3H, s)
NCH ₃	2.49 (3H, s)	
PhCH=N-N	8.17 (1H, s)	
PhCH=O		10.50 (1H, s)
CH_2N	3.18 (4H, br m), 2.71 (4H, br m)	

Table 4. ¹H NMR chemical shifts (δ , ppm) and coupling constants of RIP-3 and RIP-4 in CD₃OD^a.

^a The data of rifampicin is shown in Table 2.

^b Obscured by other resonances.

°~° Interchangeable.

The structure of RIP-2 was elucidated to be 23-[O-(β -D-glucopyranosyl)]rifampicin (3) by the same procedures as used for RIP-1. Positive FAB-MS showed a peak at m/z 1,007 (M+Na)⁺, and negative FAB-MS at m/z 983 (M-H)⁻. Its molecular formula was determined by HRFAB-MS to be C₄₉H₆₈N₄O₁₇ (Table 1) which is in accord with a monoglucosylated rifampicin, and this was confirmed by its ¹H NMR and ¹³C NMR data (Tables 2 and 3). The site of glycosylation was similarly determined by HMBC spectrum to correlate 23-H (δ 3.56) with C-1' (δ 103.9) and 1'-H (δ 4.40) with C-23 (δ 88.5). Both the 23-H signal and the C-23 signal shifted to downfield ($\Delta\delta$ 0.48 ppm and $\Delta\delta$ 10.3 ppm, respectively) compared

Fig. 3. ¹H-¹H correlation of RIP-3 (4) by COSY experiment.

with those signals of rifampicin. Thus, the structure of RIP-2 was established to be $23-[O-(\beta-D-glucopyranosyl)]$ rifampicin (3).

Positive and negative FAB-MS data of RIP-3 and RIP-4 indicated their molecular weight to be 902 and 805, respectively. The molecular formulae were determined by HRFAB-MS to be $C_{43}H_{59}N_4O_{15}P$ for RIP-3 and $C_{38}H_{48}NO_{16}P$ for RIP-4 (Table 1). ³¹P NMR spectrum of RIP-3 and of RIP-4 showed a signal at δ 2.05 and δ 1.79, respectively, due to a phosphoric acid ester. These data suggest that RIP-3 and RIP-4 are *O*-phosphorylated rifampicin and phosphorylated 3-formylrifamycin SV, respectively, instead

Fig. 4. COSY spectrum of RIP-4 (5).

of the glycosylation in the case of RIP-1 and RIP-2.

The structure of RIP-3 was determined by ¹H NMR (Table 4), COSY (Fig. 3) and ³¹P NMR experiments. In COSY experiment, ¹H signals of 17-H through 24-H and of 25-H through 29-H were correlated, and the signals at δ 4.28 and at δ 2.81 were assigned to 21-H and 23-H, respectively. Comparing the chemical shifts of ¹H-signals with those of rifampicin (Table 2), prominent down field shift caused by phosphorylation was observed only for 21-H ($\Delta\delta$ 0.41 ppm).^{8,9} In a {H}-P selective decoupling experiment, a doublet at δ 2.05 ($J_{21-H,P}$ =8.4 Hz)¹⁰ due to ³¹P callapsed into a sharp singlet by irradiation at δ 4.28 (21-H). These facts indicate that 21-OH of rifampicin was phosphorylated in RIP-3 (4).

¹H NMR spectrum of RIP-4 lacked the signals of *N*-methyl piperazine moiety present in rifampicin and, instead, exhibited a signal due to a formyl proton at δ 10.50 (Table 4). The signals of 21-H (δ 4.23) and 23-H (δ 2.84) were assigned based on the correlation of 19-H through 24-H in COSY experiments (Fig. 4). Down field shift of 21-H (Δ 0.36 ppm) indicates that phosphorylation occured, like RIP-3, on the 21-OH.

No other significant differences was observed in the ¹H NMR spectra of RIP-3, RIP-4 and rifampicin, indicating that the rest of the structures of these compounds are the same. Thus, the structures of RIP-3 and RIP-4 were determined to be 21-(O-phosphoryl)rifampicin (4) and 3-formyl-21-(O-phosphoryl)-rifamycin SV (5), respectively.

Acknowledgment

The authors wish to thank Dr. KAZUO FURIHATA of Department of Agricultural Chemistry, The University of Tokyo for the measurement of ³¹P NMR and his valuable advice in NMR experiments.

References

- MAGGI, N.; C. R. PASQUALUCCI, R. BALLOTTA & P. SENSI: Rifampicin: A new orally active rifamycin. Chemotherapia 11: 285~292, 1966
- 2) FURESZ, S.: Chemical and biological properties of rifampicin. Antibiot. Chemother. 16: 316~351, 1970
- 3) LANCINI, G. & W. ZANICHELLI: Structure-activity relationships in rifamycins. In Structure-activity Relationships among the Semisynthetic Antibiotics. Ed., D. PERLMAN, pp. 531~600, Academic Press, 1977
- YAZAWA, K.; Y. MIKAMI, A. MAEDA, M. AKAO, N. MORISAKI & S. IWASAKI: Inactivation of rifampin by Nocardia brasiliensis. Antimicrob. Agents Chemother. 37: 1313~1317, 1993
- 5) YAZAWA, K.; Y. MIKAMI, A. MAEDA, N. MORISAKI & S. IWASAKI: Phosphorylative inactivation of rifampicin by *Nocardia otitidiscaviarum*. J. Antimicrob. Chemother., to submitted
- 6) CRICCHIO, R.; P. ANTONINI, G. C. LANCINI, G. TAMBORINI, R. J. WHITE & E. MARTINELLI: Thiazo rifamycin S. I. Structures and synthesis of rifamycins P, Q and Verde, novel metabolites from mutants of *Nocardia mediterranea*. Tetrahedron 36: 1415~1421, 1980
- 7) WALKER, T. E.; R. E. LONDON, T. W. WHALEY, R. BARKER & N. A. MATWIYOFF: Carbon-13 nuclear magnetic resonance spectroscopy of [1-¹³C] enriched monosaccharides. Signal assignments and orientational dependence of geminal and vicinal carbon-carbon and carbon-hydrogen spin-spin coupling constants. J. Am. Chem. Soc. 98: 5807~5813, 1976
- YAZAWA, K.; Y. MIKAMI, A. MAEDA, T. KUDO, K. SUZUKI, N. SAITO & A. KUBO: Inactivation of kanamycin A by phosphorylation in pathogenic *Nocardia*. Microbiol. Immunol. 35: 39~48, 1991
- 9) O'HARA, K.; T. KANDA & M. KONO: Structure of a phosphorylated derivative of oleandomycin, obtained by reaction of oleandomycin with an extract of an erythromycin-resistant strain of *Escherichia coli*. J. Antibiotics 41: 823~827, 1988
- SIDDALL, T. H., III & C. A. PROHASKA: Conformation of organophosphorus compounds. II. Proton magnetic resonance studies of some phosphites, phosphonites, phosphonates, phosphonates and additional phosphinates. J. Am. Chem. Soc. 84: 3467 ~ 3473, 1962